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Data Mining
= Automated discovery of interesting patterns

in large datasets
Researchers identified several kinds of 
interesting patterns in an adhoc manner

classification and regression models, clusters, 
association rules, frequent patterns, sequential 
patterns, time-series patterns, summaries, cyclic 
patterns, hierarchical patterns, max-patterns, 
closed patterns, multi-dimensional patterns, etc.
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Current State-of-Art
Dozens of algorithms exist for each task, 
focused on optimizing accuracy, speed, etc.
State-of-art algorithms are usually 
mathematically robust and proven to work 
effectively for specific domains (language, 
speech, image, web, etc.).
But these algorithms are often conceptually 
complex, hard to “break into pieces”, and 
hence cannot be easily customized for new 
domains.
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Customizing Difficulty
Applying current algorithms in real-life requires data-
mining experts

To map domain problem to data mining tasks
To select which algorithms to use for each task
To set parameters, select features, design distance metrics

Unfortunately, it also requires domain experts
Both kinds of experts are costly!
Communication between data-mining experts and 
domain experts is often a bottle-neck.

Experts have depth in their respective domains.
Not guaranteed to have communication skills good enough to 
translate specialized terminology.
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Unified Theory of Data Mining
1 of the 10 recently identified challenging 
problems [Yang & Wu] is to develop a unifying 
theory of data mining.
⇒ Is there a small set of core data mining tasks to which 

all others can be reduced?
⇒ It may be possible to build a data mining system that 

implements the core in a highly flexible, modular way.
⇒ Application of data mining to specific domains 

(language, speech, image, web, etc.), and to other 
data mining tasks becomes a matter of simple 
customization.
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Challenge: Grand Unified System
Create a complete data mining system that is 
easily extensible to unforeseen requirements 
and new domains.

Reduce dependency on data mining experts
Extensible and customizable

⇒ Simple to understand, design, implement, modify, break 
into pieces.
Without sacrificing on standard metrics such as accuracy 
and speed, as far as possible.

Reduce dependency on domain experts
Minimize user-defined parameters, or set them 
automatically.
Automate feature selection.
Automate design of distance metrics.



7

Desirable Features of System
1. Simple and modular

Generic: Built on principles that are domain independent
Customizable: Allow embedding of domain constraints
Data Driven: Better, discover domain constraints from data

2. Accurate
3. Handle dynamic data
4. Efficient offline processing (scalable)
5. Efficient online processing (interactive response times)
6. Parameterless
7. Noise-resistant
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The Scientific Method
Observe system behaviour and collect data.

⇐ Model behaviour using rules / theories.
⇐ Predict behaviour using models.
⇐ Design systems with desired behaviour using 

our predictive capability.

Idea 1:
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Idea 1: The Goal of Scientific Knowledge
Observe system behaviour and collect data.

Repeatable observations ⇒ Frequent patterns
Significance of observations ⇒ Uniqueness mining

⇐ Model behaviour using rules / theories.
Association rules, probability distributions, …

⇐ Predict system behaviour using models.
Classification, Regression

⇐ Design systems with desired behaviour using 
our predictive capability.

Search a space of designs that are similar to known 
good designs: Similarity search
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Idea 2: Frequent Patterns as Model
That which is infrequent is insignificant.

Although in rare cases it may be significant, there is 
not enough statistical evidence to conclude anything 
about it.

⇒ The set of frequent patterns represent everything that 
is significant in the data.

⇒ Overall trends and patterns that can be inferred from 
the original dataset can always be inferred from the 
frequent itemsets.

The resulting representation of frequent patterns 
is typically much smaller than the original 
dataset size. Moreover, we can control this size 
according to our requirements and capacity.

11

Idea 2: Frequent Patterns and Features

playfalse9670rain
playfalse8068rain
playfalse8075rain
don’ttrue7065rain
don’ttrue8071rain
playfalse7581overcast
playtrue6564overcast
playfalse7883overcast
playtrue9072overcast
playfalse7069sunny
don’tfalse9572sunny
don’tfalse8585sunny
don’ttrue9080sunny
playtrue7075sunny

ClassWindy
?

Humidity
(%)

Temp
(°F)

Outlook

rain, t=(70,79),hum=(80,89),still, play
rain, t=(60,69),hum=(80,89), still, play

rain, t=(70,79),hum=(80,89),windy, don’t
rain, t=(60,69),hum=(70,79), windy, don’t

overcast, t=(60,69),hum=(60,69),windy, play
overcast, t=(80,89),hum=(70,79), still, play

sunny, t=(70,79),hum=(90,99), still, don’t
sunny, t=(60,69),hum=(70,79), still, play
overcast, t=(70,79),hum=(90,99),windy, play
overcast, t=(80,89),hum=(70,79), still, play

rain, t=(70,79),hum=(90,99), still, play

sunny, t=(80,89),hum=(80,89), still, don’t
sunny, t=(80,89),hum=(90,99),windy,don’t
sunny, t=(70,79), hum=(70,79),windy,play

Market-basket format
Input data format for most mining tasks

Frequent patterns mined from market-basket data are indicative of 
certain trends. E.g. a pattern may be indicative of a specific class.
We can infer trends / behaviours of individual records by analyzing 
the frequent patterns present in them. 12

Advantages of Frequent Patterns
Frequent patterns capture all significant relationships
between items in a dataset.
Ensuring a minimum frequency eliminates noise.
The size of the resulting representation is small and 
controllable.
Efficient frequent pattern mining algorithms exist that 
easily handle 1000s of columns and billions of rows.
Efficient incremental mining algorithms exist to handle 
changing datasets.
For a new domain, we can input a large space (1000s) 
of possible features without worrying too much about 
feature selection. The algorithms can figure out which 
are statistically significant feature combinations.
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Predict future behaviour of system in terms of past

Core Problems of Data Mining

Similar objects likely have similar behaviour
User’s knowledge of classes is often goldgold standard

Classification

Regression

Knowledge / record representation – capture significant properties

Frequent Pattern Mining

Uniqueness Mining

Similarity Computation

Clustering
User Interaction
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Predict future behaviour of system in terms of past

Grand Unified System

Similar objects likely have similar behaviour

ACME [ALT-05]

GEAR [KDIR-10]

Knowledge / record representation – capture significant properties

ARMOR [FIMI-03]

Uniquify [DASFAA-08]

DISC [PAKDD-11]

Evo-Cluf [StreamKDD-10]
RAIL [COMAD-10]

User’s knowledge of classes is often goldgold standard
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Features

YYYYYYYNoise 
Resistant

NYYYNYNParameter
-less

YYYtodoYYcanInteractive 
response

YYYYYNYScalable

YYYYcanNYDynamic 
Data

YYYYtodoYn/aAccurate

YYYYYYYData 
Driven

YYYYYYYGeneric

RAILDISCGEAREvo-
Cluf

Uniq.ACMEARMOR

16

ARMOR: Mine Association Rules
Define optimal algorithm (Oracle)

Magically knows identities of frequent itemsets before
mining begins. Has to only determine counts of these 
itemsets in one pass over the database.

Minimal changes to Oracle
Maximum two passes over database
“Short and light” second pass
Performance: Within twice of Oracle for a variety 
of real and synthetic databases
Easy to convert to incremental algorithm and to 
apply on data streams.
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ACME: Classifier
The frequent itemsets of each class, with 
their probabilities are used as constraints
in a max-entropy model.

Max-entropy ⇒ Mathematically robust
Frequent itemsets ⇒ all significant constraints
Best in theory and practice

But, slow.
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Uniquify: Uniqueness Mining
To determine what properties makes each given 
record (object) unique/special.

Hiring people that have special talents
Assigning jobs based on speciality
Assigning weights to special jobs
Assigning marks to questions in an exam

Formulation: A property is unique if there are very few 
objects with that property, while for similar (sibling)
properties this is not the case.

Example properties: (lang=‘English’), 
(country=‘India’,lang=‘Hindi’),etc.

Lemma: If a property p is unique, every specialization 
of p is also unique.
⇒ Levelwise mining is possible.
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EvoCluf: Clustering
Mine generalized closed frequent itemsets
Each frequent itemset is a cluster. Hierarchy of clusters 
exists.

Remove duplication by finding cluster with maximum score for a 
record d.

score(d,C) = Sum of TF-IDF of each item of C in d
score(d,C) = Sum of similarity of d and each record in C
E.g. For text documents, can use no. of matching wikipedia
categories of words in the documents

Evolution: We use incremental algorithm to find a new 
clustering at time t+1, and update records to belong to 
their new best clusters.
Good quality clusters (based on F-score) are obtained, 
while at the same time ensuring that cluster evolution is 
smooth (i.e. do not change abruptly).

20

GEAR: kNN-based Regression
Assume dependent variable varies smoothly.
Smooth curves can be modelled as piece-wise linear.
⇒ Apply local linear regression.

Some Details:
Find k nearest neighbours

Select best k: Vary k and select one which minimizes error
Construct predictors: For each dimension, construct a line that 
fits the k nearest neighbours along that dimension.
Output: Weighted sum of values output by individual predictors.

Set weight inversely proportional to mean error of prediction (of 
kNNs) along the dimension of predictor.

Performs better than 14 other algorithms (including 
state-of-art) on standard datasets.
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DISC: Data Driven Similarity
Introduce notion of similarity between 2 values aij and aik
of a categorical attribute Ai based on co-occurrence 
statistics and interestingness of co-occurrences.

Define: Mij = [interestingness(aij → v): all values v of all attributes 
except Ai]
Similarly define Mik
Measure vector similarity of Mij and Mik

Tried 12 interestingness measures and 3 vector 
similarity functions.
Evaluated for clustering (k-means) and classification 
(kNN) tasks

Significant improvement in accuracy by changing only similarity 
measure while keeping algorithm and its parameters constant.
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RAIL: Interactive Classification
Manual intervention should be minimal
Use associative classifier

Mine CARs [Consequent is class].
To classify test record R, use weighted voting of CARs that 
match R.

When human classifies records (whose ambiguity > μ):
Change weight of existing CARs
Create new soft CARs using minimally infrequent (negative 
border) patterns.
Promote soft CARs to hard when they become frequent.

Achieves high accuracy with very few user pings.

Association Rule Mining based 
on Oracle

ARMOR
In Frequent Itemset Mining 

Implementations (FIMI) 2003
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Frequent Itemsets

Lemon, Tamarind4
Tomato, Potato, Onions, Chilly3
Tomato, Potato, Brinjal, Pumpkin2
Tomato, Potato, Onions1

ItemsTransaction ID

Support(X) = |transactions containing X| / |D|
Confidence(R) = support(R) / support(LHS(R))

Problem proposed in [AIS 93]: Find all rules satisfying user 
given minimum support and minimum confidence.

⇒ Find all frequent itemsets (i.e. support(X) ≥ minsup)

Rule: Tomato, Potato → Onion (confidence: 66%, support: 50%)

D :
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Feeding Frenzy

AIS
SETM
Apriori
AprioriTid
AprioriHybrid
OCD
Partition
Sampling
DHP
CARMA

SPINC
AS-CPA
SSAS-CPA
RSAS-CPA
ColumnWise
Hierarchical BitMap
FP-Growth
Tree Projection
VIPER
H-Mine

1993

AIS

1995 1997 1999

Apriori
Partition

Sampling
DIC

ASCPA
CARMA VIPER

FP-Growth

2001

..... Optimal
Is there
an end?

ClusterApr
Eclat
MaxEclat
Clique
MaxClique
TopDown
dEclat
OPUS_AR
BFPA
DFPA
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Optimal Algorithm: Oracle
Magically knows identities of frequent itemsets 
before mining begins. Therefore, has to only 
determine the counts of these itemsets in one
pass over the database

Minimum work required from any algorithm

Careful design of data structures to ensure 
optimal access and enumeration of itemsets
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Counting 1&2-itemsets

A1 A2 A3 Ai………

Transaction: b1 b2 b3 b4 b5

All Items:

a2
a3
a4

aj
a1 a2 a3 aj-1
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Counting Longer Itemsets (k >2)

Partition database
For each itemset, compute the list of transaction-ids 
(tidlist) containing it
Initiate tidlist intersections from frequent singletons
Depth-first traversal
Optimize using tid-vector approach

A C DB

ACAB AD BC BD CD

ABC ABD ACD BCD

ABCD

DAG Structure

29

Tidset Intersection

Cost of intersection = Θ(|L|)
Cost of tid-vector construction

Proportional to number of “1”s in V
Amortized over many intersections
Space for V can be statically allocated

Tid-vector V: 0010101101….

Tid-list L: 5, 6, 10, 29, …

A C DB

ACAB AD BC BD CD

ABC ABD ACD BCD

ABCD
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No wasted Enumeration
All 1-itemsets are either frequent or in -ve
border
Only combinations of frequent 1-itemsets 
enumerated for pairs
Depth-first search ensures each itemset is 
visited only once
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Enumeration Cost = Θ(1)
Direct lookup arrays for 1&2-itemsets. 
Best in unit-cost RAM model

For longer itemsets, cost = Θ(|X.childset|)
resulting in Θ(1) cost per itemset overall

All operations involve array and pointer 
lookups, which cannot be improved upon
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Oracle Features
Uses direct lookup arrays for 1-itemsets and 2-
itemsets
Uses DAG structure for longer itemsets
No wasted enumeration of itemsets
Enumeration cost per itemset = Θ(1)
Caveat: Not really optimal

Doesn’t share work for transactions that are 
significantly similar. E.g. if 2 transactions are 
identical, it does the same work for both
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Performance Setup

Algorithms: Oracle, VIPER, FP-growth, 
Apriori
Variety of Databases

File-system backend
Integration with commercial RDBMS

Cache data to file-system and run algorithm
Implement algorithm as stored procedure
Implement algorithm in SQL

Extreme and typical values of minsup
34

Response Times of Current Algorithms

Support (%)
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m
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)
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0.5 1.5 2.5 3.5 4.5

Oracle VIPER FP-GrowthLegend: Apriori
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ARMOR
Minimal changes to Oracle
Maximum two passes over database
“Short and light” second pass
Performance: Within twice of Oracle for a 
variety of real and synthetic databases
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A, B, C, D, EA, B, C,      E

ARMOR Processing

Candidates

AB, AC, BC, CE
ABC

Partial support

d-frequent itemsets

First Pass
Conceptually partition database 
into disjoint blocks.
C (the set of candidates) = set of all 
1-itemsets
After processing each partition, 
update C; this may involve both 
insertions and deletions
d-frequent itemsets: The algorithm 
ensures that at any stage, if d is the 
database scanned so far, then the 
frequent itemsets within d are 
available.
Partial Supports: The count of an 
itemset since it has been inserted 
into C.

Second Pass
• Obtain complete supports of candidates.
• No new insertions into C; but deletions 

allowed.
• Light and short pass
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Candidate Generation
Itemsets can move freely between being partially-frequent, 
negative border and partially-infrequent.

Observation: An itemset can become partially frequent iff it has some subset 
in N which moves to F. Such itemsets are called promoted borders.

The Negative Border Approach

A C DB

ACAB AD BC BD CD

ABC ABD ACD BCD

ABCD

φ
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Proof of Correctness
Consider the life of an itemset X in the set of candidates, C
Solid area represents that X was in C
Blank area represents that X was not in C

X removed from C
⇒ It is not frequent in d1

d1

X is infrequent in d2

d2

d3

d4

d5

d6

X removed from C
⇒ It is not frequent in d3

X is infrequent in d4

X removed from C
⇒ It is not frequent in d5

X is infrequent in d6

Since X is infrequent in every block, it is infrequent overall.
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Response Times of ARMOR
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Memory Utilization of ARMOR

Associative Classification based 
on Maximum Entropy

ACME
In Algorithmic Learning Theory 

(ALT) 2005

42

Bayesian Classification

Max Entropy Principle

Max Entropy Classification

Classification

Association Rules

Associative Classification

ACME

Concepts

GIS

Entropy
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Classification Problem

playfalse9670rain
playfalse8068rain
playfalse8075rain
don’t playtrue7065rain
don’t playtrue8071rain
playfalse7581overcast
Playtrue6564overcast
Playfalse7883overcast
playtrue9072overcast
playfalse7069sunny
don’t playfalse9572sunny
don’t playfalse8585sunny
don’t playtrue9080sunny
playtrue7075sunny

ClassWindy?Humidity
(%)

Temp
(°F)

Outlook

Model relationship between 
class labels and attributes

?false7673rain

?true6977sunny

⇒ Assign class labels to
new data with unknown labels

e.g. outlook = overcast ⇒ class = play

Play Outside?
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Recap: Frequent Itemsets

Lemon, Tamarind4
Tomato, Potato, Onions, Chilly3
Tomato, Potato, Brinjal, Pumpkin2
Tomato, Potato, Onions1

ItemsTransaction ID

Support(X) = |transactions containing X| / |D|
Confidence(R) = support(R) / support(LHS(R))

Problem proposed in [AIS 93]: Find all rules satisfying user 
given minimum support and minimum confidence.

⇒ Find all frequent itemsets (i.e. support(X) ≥ minsup)

Rule: Tomato, Potato → Onion (confidence: 66%, support: 50%)

D :
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Associative Classifiers: CPAR, CMAR, …
Separate training data for each class
Find frequent itemsets in each class

Class Association Rules: LHS = frequent itemset, 
RHS = class label

To classify record R, find rules that apply on R.
Combine the evidence of rules to decide which 
class R belongs to.

E.g. Add the probabilities of the best k rules.
Mathematically incorrect, but works well in practice.
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Shannon’s Entropy
An expt has some possible outcomes
Consider a series of N expts
Suppose each outcome occurs exactly M times
⇒ There are N/M possible outcomes
⇒ To represent each outcome, we need log N/M bits.

This generalizes even when all outcomes are not equally 
frequent.

Reason: For an outcome j that occurs M times, there are N/M
equi-probable (pseudo) events among which only one cp to j

Since pi = M / N, information content of an outcome is
-log pi. So, expected info content: H = - Σ pi log pi

Total = N

N/M outcomes

M M M M M M M M
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Maximum Entropy Principle
Entropy corresponds to the disorder 
(randomness) in a system

Intuition: A highly ordered system will require less bits 
to represent it
Uniform random distribution has highest entropy
Order ⇔ Constraints [equations, inequations]

No evidence for order = No order!
No order = more entropy
Hence maximize entropy

Satisfy known constraints, keep everything else as 
uniform as possible

If the constraints are consistent, there is a 
unique solution that maximizes entropy.
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Example
Constraint 1: Person P distributes Rs.100 
to persons A,B,C,D,E.
If you are forced to guess, how much P 
gives to each person, what would you 
guess?
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Example
Constraint 1: Person P distributes Rs.100 
to persons A,B,C,D,E.
Constraint 2: Person P gives Rs.40 to 
person A.

How much does P give to the other people?
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Example
Constraint 1: Person P distributes Rs.100 
to persons A,B,C,D,E.
Constraint 2: Person P gives Rs.40 to 
person A.

How much does P give to the other people?
We like the most uniform distribution that 

satisfies known constraints.
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Log-Linear Modeling

∏
∈

=
sConstraint

)(

0)(P
i

f

ik

Xi

X μμ

otherwise   ,0
 constraint satisfies  if   ,1)(

                  =
= iXXf kki

These µ’s can be computed by an iterative fitting 
algorithm like the GIS algorithm.

Theorem: If there exists a positive probability distribution 
of the following form satisfying known constraints, then it 
maximizes entropy. [GIS; 1972]

μ0 is to ensure that ∑k P(Xk) = 1
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Generalized Iterative Scaling (GIS)
# N items, M constraints
P(Xk) = 1 / 2N 

// for k = (1…2N); Uniform distribution

μj = 1 # for j = (1…M)
while all constraints not satisfied:

for each constraint Cj:
Sj = ∑(k: Xk satisfies Yj) P(Xk)
μj *= dj / Sj

P(Xk) = μ0 Π(j satisfied by Xk) μj
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Bayesian Classification
Think emails, keywords, spam / non-spam
Given a new data point X={x1,x2,…,xm} to classify 
calculate P(Ci/X) for each class Ci.
Select Ci for which P(Ci/X) is maximum

P(Ci/X) = P(X/Ci) P(Ci) / P(X)
∝ P(X/Ci) P(Ci)

Naïve Bayes assumes that each xi is independent
Instead estimate P(X/Ci) directly from training data: 
supportCi(X)
Problem: There may be no instance of X in training 
data.

Training data is usually sparse
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Max Entropy in Classification
To predict P(X/Ci):

Form constraints and solve for P(X/Ci)
Use domain expertise to form constraints

Among possible solutions, choose the one 
that has maximum entropy
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No Free Lunch
With no assumptions about the domain, is 
there a best classification method?
Is any algorithm better than random 
guessing?
Answer is No!
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Why No Free Lunch ?
h1: Always selects class 1
h2: Always selects class 2
Off-training set error:

E1=0.4, E2=0.6
h1 is better.

Averaged over all target 
functions there is no 
difference in off-training set 
errors.

211111
211110
212101
211100
212011
111010
222001D
111000
h2h1Fx
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Is there a best classifier?
Consider any classifier that classifies a given 
record R into class 1. The number of target 
functions for which this is correct it is the same 
as the number for which it is wrong.
“Classifier 1 is better than classifier 2” are 
ultimately statements about the underlying 
target functions.
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Interpretation of Optimality
There is no best classifier, unless we make 
some assumptions about the distribution of 
unseen data.
Similar Familiar Problem: There is no best 
sorting algorithm, unless we make some 
assumptions about the data distribution.

Yet we compare algorithms using order-complexity.
Caveat: Sorting algorithms can make one pass 
to determine the data distribution. Classifiers 
cannot see unseen data.
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Max Entropy vs No Free Lunch
No Free Lunch: With no prior information, 
assume every target function equally likely.
⇒ Every classifier is equally good.

Max Entropy: If we have prior information, then 
use it to determine the distribution of target 
function.

Target functions that satisfy known constraints are 
preferred.
Among such target functions, none is preferred over 
the other.
Max entropy classifier will perform best when 
averaged over target functions that satisfy the known 
constraints.
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ACME
The frequent itemsets of each class, with 
their probabilities are used as constraints
in a max-entropy model.

Max-entropy ⇒ Mathematically robust
Frequent itemsets ⇒ all significant constraints
Best in theory and practice

But, slow.
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Split Data by Classes

a, c
b, c
a, b, c
Records

a, d
Records

C1 C2

S1 S2

2     1 SS  S ∪=
Frequent 
Itemsets of C2

Frequent 
Itemsets of C1

Apriori Apriori

62

Build Constraints for a Class

a, c

b, c

a, b, c

Records

0.33a, b, c
0.67b

0.67b, c
pjsj

sjC1
Constraints of C1S∈

} p  )C |P(s  Ss | )p,(s {  C of sConstraint jij jjji =∧∈=

63

Build distribution of class C1

0.10111
0.11111

dcba P(X|C1)
X

0.33a, b, c
0.67b

0.67b, c
pisi

Total possible records – 24 in number

Maximum Entropy Principle: Build a distribution  P(X|C1) 
that conforms to the constraints and has the highest Entropy

constraints
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Problem with Log-Linear Model
 

)(
j)C|X(P    :Model ∏

∈

=
Cjs

f

i
i

Xiμ

0.33a, b, c
0.67b

0.67b, c
pisi

Solution does not exist if  P(X|Cj) = 0  for any X.

cb⇒

Probability is 0 for 
all ‘X’ which have 
‘b=1’ but ‘c=0’.
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Fix to the Model

set to 01 010
set to 00 011
set to 00 011

set to 00010

dcba P(X|C1)
X

Fix: Define the model 
on only those ‘X’
whose probability is 
non-zero.
Explicitly set these 
record probabilities 
to zero and learn for 
µ’s without 
considering them.

Learning time decreases 
as |X| decreases
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Effect of pruning

8.89%(189)180Breast

1.3%(99) 24Waveform

(87) 55

(29) 14

(115) 95

(54) 44

(85) 61

(246) 204

(354) 263

# Cons

8.6%Pima

12.1%Lymph

55.1%Heart

9.66%German

7.42%Diabetes

9.96%Cleve

10.1%Austra

Pruned XDataset
Datasets chosen from UCI ML Repository.



67

Remove non-informative constraints.
A constraint is informative if it can distinguish between 
classes very well.  Use standard information measure
Entropy of the distribution P(C|si) should be greater 
than a given threshold (0.6 in our experiments).

Eg: s1 = {a,b,c}
P( C1| s1 ) = 0.45    and   P( C2 | s1 ) = 0.55
Remove {a,b,c} from the constraint set.
s2 = { b, c }
P( C1| s2 ) = 0.8    and   P( C2 | s2 ) = 0.2
Include { b, c } in the constraint set.

Making the approach scalable (1)

68

Making the approach scalable (2)
Splitting: Split the set of features ‘I’ into groups that 
are independent of each other.

Two groups of features are independent of each 
other if they don’t have an overlapping constraint 
between them

Global P(.) can be calculated by merging individual 
P(.)’s of each group in a naïve-bayes fashion

Ex: I = {a,b,c,d},  and constraints are {a}, {a,b} and   

{c,d}. Split I into I1={a,b} and I2={c,d}.

Learn Log-Linear models P1(.) for I1={a,b} and 

P2(.) for I2={c,d}

P(b,c)  =  P1(b) * P2(c)
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Performance Evaluation

81.52

76.3

84.45

81.85

73

76.30

82.5

96.56

84.9

TAN

83.0880.076.4480.82Waveform
77.8972.974.3476.17Pima
78.477.877.083.1Lymph
82.9681.878083.7Heart
71.373.470.970.0German
77.8674.572.3975.78Diabetes
83.8282.876.2383.82Cleve
96.4996.395.1397.28Breast
85.584.985.584.34Austra

ACMECBAC4.5NBDataset

Performance of ACME vs other classifiers.
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Example
Imagine emails represented as sets of keywords and being 
classified as spam/non-spam.
Let us focus on 3 keywords A, B, C.
From the training data, let us say we get 4 "constraints" for the spam 
class:

P(A) = 0.2 = d_1 (say)
P(B) = 0.3 = d_2
P(C) = 0.1 = d_3
P(AB) = 0.1 = d_4

Now, our task is to use the GIS algorithm to determine P(ABC).
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Define X_i as a bit-vector representing the presence/absence of 
keywords.
E.g. X_3 = 011 represents the presence of B,C and absence of A.
Note that P(X_3) is "not" the same as P(BC) since the latter doesn't 
care about the presence/absence of A.

ABC
X_0 = 000
X_1 = 001
X_2 = 010
X_3 = 011
X_4 = 100
X_5 = 101
X_6 = 110
X_7 = 111

The previous 4 constraints can be rewritten in 
terms of the X_i's:

P(A) = P(X_4) + P(X_5) + P(X_6) + P(X_7) = 0.2
P(B) = ... = 0.3
P(C) = ... = 0.1
P(AB) = P(X_6) + P(X_7) = 0.1

//AB is satisfied by X_6 and X_7
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Define:
S_1 = P(X_4) + P(X_5) + P(X_6) + P(X_7) ----(1)
S_2 = ... ------------------------------------------------(2)
S_3 = ... ------------------------------------------------(3)
S_4 = P(X_6) + P(X_7) -----------------------------(4)

Start GIS with P(X_i) = 1/8 = 0.125 (for all i)
Also, set mu_1 = mu_2 = mu_3 = mu_4 = 1 and mu_0 = 1
There are 4 mu's because there are 4 constraints.

Next, we calculate S_i for each constraint i, as per (1), (2), 
(3), (4) above.

S_1 = 1/8 + 1/8 + 1/8 + 1/8 = 0.5
similarly, S_2 = S_3 = 0.5,   S_4 = 0.25
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S_1 is 0.5; but we want it to be 0.2 (since P(A) = 0.2). Since S_1 is the sum of 
some P(X_i)'s in equation (1), we want to reduce these P(X_i)'s. We want to 
scale them down by 0.2 / 0.5. So we set:   mu_i *= d_i / S_i. Thus, we get:

mu_1 = 1 * 0.2 / 0.5 = 0.4
mu_2 = 1 * 0.3 / 0.5 = 0.6
mu_3 = 1 * 0.1 / 0.5 = 0.2
mu_4 = 1 * 0.1 / 0.25 = 0.4

Using these mu's, we recalculate P(X_i)'s as:
P(X_i) = product of those mu_j's whose cp constraint is satisfied by X_i
Thus:
P(X_0) = 1 // X_0 (000) doesn't satisfy any constraint
P(X_1) = mu_3 // X_1 (001) satisfies constraint 3 only
P(X_2) = mu_2
P(X_3) = mu_2 * mu_3  // X_3 (011) satisfies constraints 2 & 3
P(X_4) = mu_1
P(X_5) = mu_1 * mu_3
P(X_6) = mu_1 * mu_2 * mu_4  // X_6 (110) satisfies constraints 1, 2 & 4
P(X_7) = mu_1 * mu_2 * mu_3 * mu_4  // X_7 (111) satisfies all 4 constraints
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But sum of above P(X_i)'s might not turn out to be 1. Infact, it turns out to be 
2.5152 for this example. So we scale all of them down by 2.5152 to make 
the sum equal 1. Then, we get:

P(X_0) = 1 / 2.5152 = 0.4 (approx)
P(X_1) = 0.08
P(X_2) = 0.24
P(X_3) = 0.048
P(X_4) = 0.16
P(X_5) = 0.032
P(X_6) = 0.04
P(X_7) = 0.008

That was the 1st iteration of GIS. These numbers are closer to the actual 
P(X_i) values. For example, we know that P(A)=0.2, P(B)=0.3, P(C)=0.1. If 
A,B,C are mutually exclusive, then P(A or B or C) = 0.6 (the sum). Notice 
that P(X_0) above is 0.4 which is 1 - 0.6. If we run the algorithm for more 
iterations we get better results.

Our task was to determine P(ABC). So we just output the value of P(X_7) 
above.


